Efficient Solution Techniques for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations on Hybrid Anisotropic Meshes
نویسندگان
چکیده
The goal of this paper is to investigate and develop fast and robust solution techniques for high-order accurate Discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured meshes. Previous work was focused on the development of hp-multigrid techniques for inviscid flows and the current work concentrates on the extension of these solvers to steady-state viscous flows including the effects of highly anisotropic hybrid meshes. Efficiency and robustness are improved through the use of mixed triangular and quadrilateral mesh elements, the formulation of local order-reduction techniques, the development of a line-implicit Jacobi smoother, and the implementation of a Newton-GMRES solution technique. The methodology is developed for the twoand three-dimensional Navier-Stokes equations on unstructured anisotropic grids, using linear multigrid schemes. Results are presented for a flat plate boundary layer and for flow over a NACA0012 airfoil and a two-element airfoil. Current results demonstrate convergence rates which are independent of the degree of mesh anisotropy, order of accuracy (p) of the discretization and level of mesh resolution (h). Additionally, preliminary results of on-going work for the extension to the Reynolds Averaged Navier-Stokes(RANS) equations and the extension to three dimensions are given.
منابع مشابه
A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations
This paper presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes ...
متن کاملOutput-based Adaptive Meshing Using Triangular Cut Cells
This report presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier-Stokes equations. The method uses a mesh of triangular elements that are not required to conform to the boundary. This triangular, cut-cell approach permits anisotropic adaptation without the difficulty of constructing meshes that conform...
متن کاملHigh order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows
In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...
متن کاملAn Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems
We present an efficient implicit time stepping method for Discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The Local Discontinuous Galerkin method is used for the discretization of the viscous terms. For unstructured meshes, the Local Discontinuous Galerkin method is known to produce non-compact discretizations. In order to circumvent th...
متن کاملA Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier-Stokes Equations
While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometryto-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh...
متن کامل